
$('nav').addClass('visible');

$('.toggler').click(function(){
$('nav').addClass('visible');
});

Toggle <nav>...</nav>

Selector Function

Function Empty ParametersSelector of Trigger Item

The clicking of this link would add the class visible to the nav.

THE ANATOMY OF

Parameter

jQuery Functions

The above presents the most basic example of a jQuery functions
which would actually cause a change to happen. It is composed
of a selector, wherein the contents of the quotes function
exactly like a CSS selector; a function, which is defined in
jQuery and applies a specific action to the selector; and a
parameter, which tells the function what value to use.

In this case, the addClass function adds the class visible to
the nav element.

Generally, a function like that above needs to be triggered by
user interaction. For example, clicking on a button can add a
class to an item to make it viewable — useful for toggling
visibility. This requires an extra level of depth to the func-
tion. Below is an example of triggering an action based on the
clicking of a button.

THE BASICS

MAKING IT PRACTICAL

$('section').click(function(){
$('section').removeClass('visible');
$(this).addClass('visible');
});

<section>
<h2>Interesting Title</h2>
<p>...</p>
</section>
<section>...</section>
<section>...</section>

section p {

}
section.visible p {
display: block;
}

The result of this code would be that upon page load, you would see only
the h2 elements, and then when any section was clicked, the following:
All sections would have the visible class removed, and the one that was
clicked would have the class added to it. We do it in this order so that
only one section is “open” at a time.

THE ANATOMY OF

jQuery Functions

Above, we are embedding one function inside another. click()
is a function which must be attached to an element selector
(.toggler in this case) because it must know what must be
clicked to kick off the function. In between the braces, you
may place any number of actions (in the form of functions) to
be performed upon clicking of the first element.

*Upon click, we are creating a function() which houses the actions we want
performed. The parentheses are left blank because we’re not provided other
information; that is, everything will be provided between the braces that
follow. There are cases when parameters are necessary here, but we’ll rarely
if ever use them in jQuery.

BREAKING IT DOWN

$('.toggler').click(function(){
$('nav').addClass('visible');
});

*

start a function when
a section is clicked

take away the visible class
from all section elements

take away the visible class
from all section elements

end the function(){ and the
click() function.

HTML CSS

display: none;

this is a javascript
variable which
refers to the item
that triggered the
action. Variables
used as selectors
are not surrounded
by quotes.

<nav>

Toggle Nav
...
</nav>

nav ul {

}
nav.visible ul {
display: block;
}

THE ANATOMY OF

jQuery Functions
Putting Them to Use

So before we start running the fun stuff, we have to wrap all
our functions which are to come in one which first checks that
all our page elements are loaded: $(document).ready. This
ensures that we can actually manipulate items because they are
loaded and styled first.

WHAT’S GOING ON

$(document).ready(function(){
 $('.toggler').click(function(){
 $('nav').toggleClass('visible');
 return false;
 });
});

When all page elements
are loaded, initiate
jQuery functions

Since we’re using a
click function, we tell
the browser not to obey
the href value so the
page doesn’t jump.
Look this up!

HTML CSS

display: none;

Skipping presentation, the above jQuery, HTML and CSS are the
basic requirements needed for a togglable navigation list.

Notice two key things:
1) We are changing the class of the <nav> element, then styling its ul based
upon its context (whether its nav has a class).

2) We leave the toggler button outside the ul, so that when the ul disap-
pears, the nav still has content in it and therefore still shows up on the
screen. This would be a good reason to apply a background color to the nav
rather than just the nav > ul.

